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USE OF A SIX-DEGREES-OF-FREEDOM MOTION SIMULATOR 

FOR VTOL HOVERING TASKS 

By Emmet t  B. Fry, Richard K .  Greif, and Ronald M .  Gerdes 

A m e s  Research Center 

SUMMARY 

A p i l o t e d ,  six-degrees-of-freedom motion s imulator  has been evaluated 
with regard t o  i t s  a b i l i t y  t o  s imulate  VTOL v i s u a l  hovering t a s k s .  Charac­
ter is t ics  of t h e  v a r i a b l e - s t a b i l i t y  j e t - l i f t  B e l l  X-14A a i r c r a f t  were simu­
l a t e d ,  and r e s u l t s  f o r  t h e  r o l l  and p i t c h  axes were compared with f l i g h t  d a t a .  
The r o l l - a x i s  d a t a  were a l s o  compared with d a t a  from two- and single-degree­
of-freedom s imula to r s .  

Control power and damping requirements f o r  t h e  r o l l  and p i t c h  axes 
compared very w e l l  with f l i g h t  d a t a .  The s imula to r ' s  motion q u a l i t y  was con­
s ide red  outs tanding f o r  VTOL hovering f l i g h t .  I ts  t r a v e l  l i m i t s  were l a rge  
enough t o  s imulate  hover-maneuver t a s k s  on a one-to-one scale, t h a t  i s ,  with­
out t h e  need f o r  any a t t e n u a t i o n  of t h e  d r i v e  s i g n a l s .  

R o l l - l a t e r a l  motions (two-degrees-of-freedom motions) gave e s s e n t i a l l y  
t h e  same r e s u l t s  as s ix-degrees  operat ion f o r  evaluat ion of r o l l - a x i s  
maneuvers. 

INTRODUCTION 

The app l i ca t ion  of p i l o t e d  ground-based f l i g h t  s imulators  t o  t h e  s tudy 
of problems associated with VTOL a i rc raf t  i n  hovering f l i g h t  has now under­
gone a t  l e a s t  a decade of s e r i o u s  development. During t h a t  t i m e ,  some highly 
soph i s t i ca t ed  VTOL s imulators  have evolved, and t h e  s imulat ion technique i s  
now considered as important t o  t h e  s tudy of handling q u a l i t i e s  as t h e  wind 
tunnel i s  t o  t h e  study o f  aerodynamics. Despi te  t h i s  success ,  e f f o r t s  pe r ­
s i s t  t o  develop VTOL s imulat ion t o  a higher  degree of u se fu lness .  P a s t  
s imulat ions have served p r i m a r i l y  t o  demonstrate t h e  r e l a t i v e  importance o f  
design parameters, and t h e  requirement now is  f o r  s imulat ions t h a t  are more 
e f f e c t i v e  i n  e s t a b l i s h i n g  t h e  effects of i nd iv idua l  parameter magnitude. 

A l l  ground-based s imula to r s  have inhe ren t  l i m i t a t i o n s  t h a t  d e t r a c t  from 
realism and, consequently, i n h i b i t  t h e  a b i l i t y  t o  o b t a i n  d a t a  a p p l i c a b l e  t o  
f l i g h t .  For example, even those  s imulators  with motion c a p a b i l i t y  cannot pos­
s i b l y  provide t h e  p i l o t  with s u f f i c i e n t  t r a v e l  f o r  him t o  perform a very wide 
v a r i e t y  of rea l i s t ic  eva lua t ion  t a s k s .  Therefore,  washouts ( i . e . ,  f i l t e r s )  
must be  superimposed on t h e i r  d r i v e  s i g n a l s  t o  a t t e n u a t e  t h e  commanded 



displacement ( r e f .  1 ) .  These washouts are gene ra l ly  designed t o  permit good 
reproduct ion of  i n i t i a l  a c c e l e r a t i o n s ,  bu t  subsequent motions may be consider­
ably out  of phase with t h e  commands. In  t h e  hovering t a s k ,  motion f i d e l i t y ,  
or lack of it, has such a pronounced e f f e c t  t h a t  a b e t t e r  a l t e r n a t i v e  may be 
no motion a t  a l l ,  if t h e  requi red  washouts are t o o  severe .  

The usefu lness  of  t h e  p i l o t e d  s imula tor  i s  a l s o  a f f e c t e d  by l i m i t a t i o n s  
of t he  v i s u a l  p r e s e n t a t i o n .  Shortcomings i n  t h e  a r t i f i c i a l  v i s u a l  scenes 
used i n  t h e  p a s t  have been p a r t i c u l a r l y  de t r imen ta l  t o  VTOL s imula t ion .  The 
prime requirements of  a wide f i e l d  of view and c l a r i t y  a t  low a l t i t u d e  tend 
t o  be  mutually exc lus ive ,  and the  phys ica l  c h a r a c t e r i s t i c s  of systems t h a t  
provide a good compromise of those  f e a t u r e s  make them incompatible with an 
adequate motion system. A r e a l  world v i s u a l  presentax ion  would seem t o  be  
highly d e s i r a b l e ,  b u t  t h a t  i s  poss ib l e  only when t h e  motions a r e  reproduced i n  
t r u e  f u l l  s c a l e .  

The Ames six-degrees-of-freedom motion s imula to r  shown i n  f i g u r e  1 was 
designed t o  overcome problems of motion and v i s u a l  requirements such as those  
descr ibed above f o r  t h e  hovering t a s k .  This device has t h e  c a p a b i l i t y  of t r a ­
vers ing  an 18-foot cube of  space,  making i t  p o s s i b l e  t o  perform small hovering 
maneuvers without t h e  use of motion washouts, and without  t h e  need f o r  an 

Figure 1.- Ames six-degrees-of-freedom simulator. 
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ar t i f ic ia l  v i s u a l  system. To determine t h e  a b i l i t y  o f  t h e  s imula to r  t o  
perform research i n  t h e  hovering f l i g h t  regime, i t  w a s  compared with t h e  X-14A 
aircraf t  during concurrent ope ra t ion  on an i d e n t i c a l  r e sea rch  problem. The 
r e s u l t s  of t h a t  comparison are t h e  main s u b j e c t  of t h i s  r e p o r t .  

Secondary t o  t h e  comparison experiment, t h e  effects of decreasing t h e  
degrees of motion freedom were evaluated by r e p e a t i n g  a po r t ion  o f  t h e  s i x ­
degrees-of-freedom program i n  two- and s ingle-degree motions. Such informa­
t i o n  may be h e l p f u l  t o  ope ra to r s  of  less e l a b o r a t e  s imulat ion equipment. 

NOTATIONS 


dec ibe l ,  20 loglo (output amplitude/input amplitude) 

a c c e l e r a t i o n  due t o  g r a v i t y ,  32 .2  f t /sec2 

r o l l  moment of  i n e r t i a ,  s l u g - f t 2  

p i t c h  moment o f  i n e r t i a ,  s l u g - f t 2  

yaw moment of  i n e r t i a ,  s l u g - f t 2  

product of  i n e r t i a ,  s l u g - f t 2  

r o l l i n g  moment ( r i g h t  wing down, p o s i t i v e )  , l b - f t  

p a r t i a l  d e r i v a t i v e  of  r o l l i n g  moment with r e s p e c t  t o  r o l l - r a t e ,  
l b - f t / r a d i a n / s e c  

r o l l - r a t e  damping, l / s e c  

r o l l i n g  moment p e r  u n i t  of  c o n t r o l l e r  d e f l e c t i o n ,  l b - f t / i n .  

r o  11-contr o  1 sens i ti v i  t y  , radians / s  ec2/ i n .  

r o  11-contro 1 power , radians /s ec2 

a i rp l ane  mass, s l u g s  

p i t c h i n g  moment (nose up, p o s i t i v e ) ,  l b - f t  

p a r t i a l  d e r i v a t i v e  o f  p i t c h i n g  moment with r e spec t  t o  p i t c h - r a t e ,  
l b  - f t / r a d i a n / s  ec 

p i t c h - r a t e  damping, l / s e c  
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M6 p i t c h i n g  moment p e r  u n i t  of c o n t r o l l e r  d e f l e c t i o n ,  l b - f t / i n .  

M6-	 p i t ch - contro 1 s e n s i t i v i t y, radians /sec2/ in .  
I Y  

M66max p i t ch - contro 1 power , radians /s ec2 
I Y  

N 

Nr 

N r-
1.2 


N6 

N 6-
IZ 


Nti 6max 
IZ 

PR 

P 
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yawing moment (nose r i g h t ,  pos i t i ve )  , l b - f t  

p a r t i a l  de r iva t ive  of yawing moment with r e spec t  t o  yaw-rate, 
lb- f t / r a d i a n / s e c  

yaw-rate damping, l / sec  

yawing moment p e r  u n i t  of c o n t r o l l e r  de f l ec t ion ,  l b - f t / i n .  

yaw- cont ro l  s e n s i t i v i t y  , rad ians /s  ec2 / in .  

yaw- con t ro l  power , radians/sec2 

p i  l o t  r a t i n g  

r o l l  r a t e  about body ax i s  ( r i g h t  wing moving down, p o s i t i v e ) ,  
rad ians /sec  

p i t c h  r a t e  about body ax is  (nose moving up, p o s i t i v e ) ,  rad ians /sec  

yaw r a t e  about body a x i s  (nose moving r i g h t ,  p o s i t i v e ) ,  rad ians /sec  

t h r u s t ,  lb  

body-axis longi tudina l  ve loc i ty  (moving forward, p o s i t i v e ) ,  f t / sec  

v e r t i c a l  t akeoff  and landing 

body-axis l a t e r a l  v e l o c i t y  (moving t o  r i g h t ,  p o s i t i v e ) ,  f t / sec  

body-axis v e r t i c a l  ve loc i ty  (moving down, p o s i t i v e ) ,  f t / s e c  

i n e r t i a l - a x i s  longi tudina l  displacement,  f t  

i n -e r t i a l - ax i s  l a t e r a l  displacement, f t  



i n e r t i a l - a x i s  v e r t i c a l  displacement (toward e a r t h ,  p o s i t i v e )  , f t  


c o n t r o l l e r  d e f l e c t i o n ,  i n .  


maximum c o n t r o l l e r  d e f l e c t i o n ,  i n .  (see t a b l e  11) 


body-axis p i t c h  angle ,  r ad ians  


body-axis r o l l ,  r ad ians  


t i m e  cons t an t ,  sec 


body-axis yaw angle ,  radians 


Subsc r ip t s  

a i l e r o n  


e l e v a t o r  


s imula to r  r e fe rence  axes system (gimbal axes) 


rudder 


t h r o t t l e  


SIMULATOR 

The Ames six-degrees-of-freedom s imula to r  i s  shown i n  f i g u r e  1 and i t s  
motion c a p a b i l i t i e s  a r e  summarized i n  t a b l e  I .  The s imulator  i s  f r e e  t o  
t r a v e l  w i th in  a cube t h a t  i s  approximately 18 f e e t  on a s i d e ,  and t h e  angular  
modes have t h e  c a p a b i l i t y  of + 4 S 0  of motion. The gimbal s t r u c t u r e  support ing 
t h e  cab r i d e s  on nylon r o l l e r s  up and down a p a i r  of  v e r t i c a l  r a i l s .  These 
ra i ls  a r e  a t t ached  t o  a tower s t r u c t u r e ,  which r i d e s  on s t e e l  r o l l e r s  along 
fou r  long i tud ina l  ra i l s .  This e n t i r e  mass, amounting t o  approximately 
79,000 l b ,  r i d e s  on s t e e l  r o l l e r s  along s i x  l a t e ra l  r a i l s .  

The angular and l i n e a r  modes are powered by e l e c t r i c  motors i n  Ward-
Leonard type servo systems ( r e f .  2 ) .  S i l e n t  chains t r a n s f e r  power from t h e  
d r i v e  motors t o  rubber-faced s e c t o r s  f o r  angular  motions, and cables  p u l l e d  
by drums t r a n s f e r  power t o  t h e  l i n e a r  modes. 

For t h i s  i n v e s t i g a t i o n ,  t h e  s imula to r  w a s  dr iven by d i r e c t  c u r r e n t  
s i g n a l s  generated i n  an analog computer. As t h e  p i l o t  operated t h e  cockpi t  
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c o n t r o l s ,  t h e  computer solved t h e  a i rcraf t  equat ions o f  motion, transformed 
t h e  computed v e l o c i t i e s  from a i r p l a n e  body-axes i n t o  s imulator  reference­
frame-axes, and i n t e g r a t e d  t h e  r e s u l t s  t o  o b t a i n  s imula to r  p o s i t i o n  d r i v e  
s i g n a l s .  These s i g n a l s  were then  modified by t h e  a d d i t i o n  of  a c c e l e r a t i o n  
and v e l o c i t y  terms t o  t h e  p o s i t i o n  d r i v e  s i g n a l s  f o r  t h e  purpose o f  s e rvo  
equa l i za t ion .  The complete s imulator  d r i v e  system i s  represented i n  figure 2 ,  
and frequency response d a t a  for t h e  r o l l ,  p i t c h ,  l ong i tud ina l ,  and lateral  
motions are provided i n  appendix A. 

I 

~ 

solution p 4 r 
Tr~nsformotlon +G *G Initio1 (Position driveofI_
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Figure 2.- Six-degrees-of-freedom si.nnJ.lator drive system. 

EVALUATION PROGRAMS 

The s imula to r ’ s  u se fu lness  f o r  VTOL hover s imulat ions was evaluated on 
t h e  b a s i s  of how accura t e ly  it could reproduce t h e  r e s u l t s  from a f l i g h t  pro­
gram conducted a t  Ames with t h e  Bell X-14A j e t - l i f t  VTOL a i rcraf t .  There 
were s e v e r a l  advantages t o  t h i s  approach. F i r s t ,  t h e  a i r c r a f t  had been used 
a t  Ames f o r  s e v e r a l  VTOL hover s t u d i e s  and was reasonably w e l l  documented. 
Second, t h e  a i rcraf t  was a v a i l a b l e  for concurrent f l i g h t s  t o  permit d i r e c t  
comparison with t h e  s imulat ion.  F ina l ly ,  and perhaps most important,  t h e  
same p i l o t s  were a v a i l a b l e  f o r  f l y i n g  both t h e  a i rc raf t  and t h e  s imulat ion,  
thus e l imina t ing  an otherwise troublesome v a r i a b l e  - t h a t  of p i l o t  technique.  

In add i t ion  t o  t h e  comparisons with f l i g h t ,  t h e  s imulator  was evaluated 
with r e spec t  t o  i t s  a b i l i t y  t o  produce r e s u l t s  s u p e r i o r  t o  those  obtained 
from one- and two-degrees-of-freedom simulat ions.  The l a t t e r  was obtained 
from two sources:  t h e  sub jec t  s imula to r  with appropr i a t e  degrees o f  freedom 
“locked-out ,If and an e a r l y  Ames simulator  with only two degrees of freedom. 

6 



Simulation of  t h e  X-14A A i r c r a f t  

Airplane i n e r t i a l  and aerodynamic c h a r a c t e r i s t i c s . - The equat ions of 
mot ion- tha t -were programmed on t h e  computer a r e  presented  i n  appendix B. A l l  
dynamic terms were included,  bu t  t h e  s imula t ion  of aerodynamic terms was 
l imi t ed  t o  l i n e a r  and angular  r a t e  damping, t h e  l a t t e r  of which was a primary 
program v a r i a b l e .  Rol l ing,  p i t ch ing ,  and yawing moments due t o  t r a n s l a t i o n a l  
v e l o c i t y  were considered n e g l i g i b l e  a t  t h e  maximum speeds a t t a i n e d  dur ing  t h e  
s imula tor  program. Unpublished f u l l - s c a l e  wind-tunnel r e s u l t s  for t h e  X-14A 
i n d i c a t e  t h a t  t h e s e  terms do no t  become s i g n i f i c a n t  u n t i l  v e l o c i t i e s  o f  
approximately 15 f t / s e c  a r e  reached, and the  s imula tor  v e l o c i t i e s  r a r e l y  
exceeded one-half  t h a t  va lue ,  even dur ing  maximum performance t r a n s  l a t i o n  
maneuvers. 

Cockpit c o n t r o l s . - The s imula tor  cab ( f i g .  3) was designed t o  be 
functl 'onally i d e n t i c a l  t o  t h e  X-14A cockpi t .  The con t ro l s  cons i s t ed  of a con­
vent iona l  cen te r - s t i ck  f o r  con t ro l  of  r o l l  and p i t c h ,  rudder  peda ls  for yaw 
con t ro l ,  and a f i g h t e r - t y p e  t h r o t t l e  quadrant f o r  he igh t  c o n t r o l .  The mechan­
i c a l  c h a r a c t e r i s t i c s  of t he  p i l o t ' s  con t ro l s  ( t a b l e  11) were s e t  t o  match 
those  of t h e  X-14A, but  no e f f o r t  was made t o  d u p l i c a t e  a l l  geometric d e t a i l s .  
P i l o t  comments ind ica t ed  t h e  l a t t e r  t o  be of secondary importance f o r  t hese  
t e s t s .  

Figure 3.- Cab and ginibal structure of Ames six-degrees-x?-freedom simulator. 
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Cockpit d i sp l ays . - The instrument panel ( f i g .  4)  was f a i r l y  conventional 
except f o r  t h e  cathode-ray tube  ( a t  t h e  top-center  p o s i t i o n ) ,  which provided 
a quasi-three-dimensional d i sp l ay  of cab p o s i t i o n  with r e spec t  t o  l i n e a r  
l i m i t s  of  t r a v e l .  

Figure 4.- Instrument panel. 

Experiments 

Scope.- The scope of t h e  s imulat ion program i s  out l ined  i n  t a b l e  111, and 
t h e  eva lua t ion  t a s k s  are def ined i n  t a b l e  I V .  The s imulator  and f l i g h t  pro­
grams were as i d e n t i c a l  a s  poss ib l e  with respec t  t o  condi t ions and eva lua t ion  
tasks.  The ranges of  va r i ab le s  used i n  f l i g h t  were, of course,  l imi t ed  t o  
those a t t a i n a b l e  by t h e  X-14A. 

The r o l l  and p i t c h  axes were inves t iga t ed  f o r  t h e  purpose o f  q u a n t i t a t i v e  
comparison with f l i g h t .  The yaw and v e r t i c a l  modes were evaluated pr imar i ly  
i n  a q u a l i t a t i v e  sense .  Each ax is  was evaluated with t h e  s imula tor  motion 
ac t iva t ed  i n  a l l  s i x  degrees o f  freedom. I n  add i t ion ,  t h e  r o l l  a x i s  was 

8 



evaluated with only t h e  r o l l  and la te ra l  motions a c t i v a t e d ,  and then with only 
the  r o l l  motion s o  t h a t  t h e  effects of  l i m i t i n g  t h e  degrees of motion freedom 
could b e  assessed. 

Procedure.- The r o l l  and p i t c h  axes were i n v e s t i g a t e d  i n  a manner 
c o n s i s t e n t  with t h a t  o f  r e fe rence  3. Control power and damping values were 
va r i ed  f o r  one ax i s  a t  a t ime, while  values  f o r  t h e  o t h e r  axes were maintained 
a t  l e v e l s  adequate f o r  a p i l o t  r a t i n g  of 3-1 /2  o r  b e t t e r .  Maximum con t ro l  
d e f l e c t i o n  was constant  ( t a b l e  11), and con t ro l  s e n s i t i v i t y  was allowed t o  
vary as a func t ion  of  con t ro l  power. Combinations o f  con t ro l  power and damp­
ing  were evaluated i n  a random sequence. P i l o t s  were occasional ly  t o l d  t h e  
values f o r  a p a r t i c u l a r  combination, b u t  no t  u n t i l  t h e  eva lua t ion  t a sk  had 
been completed and a p i l o t  r a t i n g  recorded. P i l o t s  ass igned r a t i n g s  accord­
i n g  t o  t h e  p i l o t  opinion system i n  t a b l e  V.  

Two NASA t e s t  p i l o t s  p a r t i c i p a t e d  i n  t h e  s imula to r  and f l i g h t  programs. 
One of t hese  p i l o t s  had p a r t i c i p a t e d  i n  t h e  f l i g h t  i n v e s t i g a t i o n  r epor t ed  i n  
reference 3. For t h e  r o l l  a x i s ,  each p i l o t  e s t a b l i s h e d  base  d a t a  c o n s i s t i n g  
of approximately 100 t e s t  p o i n t s .  The p i t c h  a x i s  and t h e  two-degrees-of­
freedom programs were not  as ex tens ive .  One p i l o t  completed a matr ix  o f  
approximately 60 p o i n t s  f o r  each of t h e s e  phases,  and t h e  o t h e r  p i l o t  made 
spot  checks f o r  v e r i f i c a t i o n .  

For t h e  r o l l  a x i s ,  t h e  concurrent f l i g h t  study was e s s e n t i a l l y  a r epea t  
of t he  f l i g h t  s tudy r epor t ed  i n  r e fe rence  3 .  The o r i g i n a l  p l an  had been t o  
compare t h e  s imula to r  r e s u l t s  d i r e c t l y  with those of  reference 3 ,  with only 
a f e w  concurrent f l i g h t s  f o r  memory refreshment.  However, t h e  s imulator  r o l l -
con t ro l  power requirements f o r  PR = 3-1/2 were almost 30 percent  less than 
those ind ica t ed  by t h e  e a r l y  f l i g h t  s tudy.  Af t e r  a thorough examination of 
t he  s imulat ion f a i l e d  t o  uncover any e r r o r s ,  and when p i l o t s  commented during 
r e f r e s h e r  f l i g h t s  t h a t  t h e  maximum r o l l - c o n t r o l  power f e l t  much l e s s  than t h e  
2.05 rad/sec2 which was apparent ly  a v a i l a b l e  during t h e  ear l ie r  f l i g h t s ,  i t  
was decided t o  r e c a l i b r a t e  t h e  X-14A i n  hopes of  r e so lv ing  t h e  disagreement. 
F l i g h t  r e c a l i b r a t i o n  i n d i c a t e d  t h e  maximum r o l l  c a p a b i l i t y  of t h e  X - 1 4 A  t o  be 
1.6 rad/sec2,  and only 1 . 4  rad/sec2 was r equ i r ed  f o r  PR 3-1/2 ( a t  optimum 
damping) in s t ead  of  1 .75  rad/sec2 as ind ica t ed  by t h e  e a r l i e r  f l i g h t  d a t a .  
This r e s u l t e d  i n  a much more reasonable agreement between s imula to r  and f l i g h t ,  
and a decis ion was t h e r e f o r e  made t o  ga the r  new d a t a  from t h e  concurrent 
f l i g h t s  f o r  comparisons i n  r o l l .  (The f l i g h t  i n v e s t i g a t i o n  of t he  p i t c h  axes 
was not s i m i l a r l y  repeated,  because a r e c a l i b r a t i o n  i n d i c a t e d  no d i f f e rences  
from t h e  d a t a  of r e f .  3 .  However, r e f .  3 lacked s u f f i c i e n t  d a t a  t o  de f ine  a 
PR = 6-1/2 boundary, s o  t h a t  p a r t  was repeated during t h e  concurrent f l i g h t s . )  

A s  f o r  t h e  d i f f e rences  between new and o l d  f l i g h t  r e s u l t s ,  it was 
subsequently e s t a b l i s h e d  t h a t  between t h e  two i n v e s t i g a t i o n s :  (1) an undeter­
mined decrease i n  r e a c t i o n  con t ro l  b l eed  a i r  occurred as t h e  r e s u l t  of an 
engine change which decreased t h e  RPM requ i r ed  f o r  hover,  and (2) t h e  X-14A 
moment of  i n e r t i a  i n  r o l l  increased about 20 percent  as a r e s u l t  of  var ious 
s t r u c t u r a l  modif icat ions.  The combined e f f e c t  of  t h e s e  changes explains  t h e  
con t ro l  power l o s s  shown by t h e  r e c a l i b r a t i o n .  

In  answer t o  why less r o l l  con t ro l  power w a s  demanded i n  t h e  r ecen t  
f l i g h t  tes ts ,  it seems reasonable t o  assume t h a t .  (1) t h e  increased i n e r t i a  of 
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t h e  X-14A made it s i g n i f i c a n t l y  less s u s c e p t i b l e  t o  d is turbances ,  and (2) t h e  
p i l o t s  were more p r o f i c i e n t  i n  VTOL f l i g h t  as a r e s u l t  o f  t h e  experience 
gained over t h e  in te rvening  years .  (Another f a c t o r  t h a t  may have cont r ibu ted  
t o  t h e  discrepancy is  t h a t  t he  ear l ier  X-14A contained high breakout f r i c t i o n  
i n  i t s  r o l l  con t ro l  system. Reference 3 r e p o r t s  t h i s  f r i c t i o n  t o  be  2.0 l b ,  
bu t  la ter  i n v e s t i g a t i o n  ind ica t ed  t h a t  t h i s  w a s  probably a minimum. The la t ­
eral cont ro l  system has s i n c e  been equipped wi th  hydrau l i c  boos t ,  and s t a t i c  
f r i c t i o n  has decreased t o  0.5 lb . )  

Correct ions 

The frequency response of t he  s imula tor  was measured before  and a f t e r  t h e  
eva lua t ion  program t o  determine whether changes i n  s imula tor  performance had 
occurred t h a t  might i n v a l i d a t e  the  r e s u l t s .  Some changes were found, bu t  a 
r eappra i sa l  of t h e  response of each ax i s  i nd ica t ed  t h a t  de f i c i enc ie s  i n  t h e  
b a s i c  performance of t h e  longi tudina l  and la te ra l  d r i v e  systems which were 
present  throughout t h e  eva lua t ion  were more s i g n i f i c a n t  than t h e  changes t h a t  
occurred during t h e  eva lua t ion .  Improvements i n  servo  equa l i za t ion  f o r  t hese  
two systems were the re fo re  developed, and a l imi t ed  matr ix  of approximately 
20 t e s t  po in t s  w a s  repeated by both p i l o t s  t o  determine t h e  effects of t hese  
improvements on t h e  base da t a .  The only s i g n i f i c a n t  change was a reduct ion i n  
the  angular - ra te  damping requi red ,  and t h e  base  da t a  were a l t e r e d  accordingly 
before  inc lus ion  i n  t h i s  r e p o r t .  

RESULTS AND DISCUSSION 

This s e c t i o n  dea ls  pr imar i ly  with t h e  comparison of s ix-degrees-of­
freedom s imula tor  r e s u l t s  with X-14A f l i g h t  r e s u l t s .  Quan t i t a t ive  comparisons 
are presented f o r  t h e  r o l l - l a t e r a l  and p i t ch - long i tud ina l  axes.  Qua l i t a t ive  
comparisons are presented f o r  a l l  axes .  The l a t t e r  a r e  discussed as they 
apply t o  each ax is  s p e c i f i c a l l y ,  or t o  t he  e n t i r e  s imula t ion  i n  general ,  
whichever i s  appropr ia te .  

Also included is  a s h o r t  d i scuss ion  of r e s u l t s  from a b r i e f  s e r i e s  of 
tests t o  determine whether good c o r r e l a t i o n  with f l i g h t  can be obtained from 
simulators  with less than six-degrees-of-freedom. Roll-axis  da t a  from f l i g h t  
are compared with one-degree- ( r o l l  motion on ly ) ,  two-degrees- ( r o l l  and l a t ­
e r a l ) ,  and six-degrees-of-freedom s imula tor  d a t a .  

Comparison of Simulator and F l i g h t  

R o l l - l a t e r a l  a x i s .  - Simulator r o l l - a x i s  r e s u l t s  are compared with f l i g h t  
d a t a  i n  figure 5. Combinations of con t ro l  power and damping t h a t  r e s u l t e d  i n  
p i l o t  r a t i n g s  of 3-1/2 and 6-1/2 a r e  presented i n  t h e  form of bands wi th in  
which p i l o t  r a t i n g  is  e s s e n t i a l l y  cons tan t .  In genera l ,  t h e  s imulator  r e s u l t s  
co r re l a t ed  well with f l i g h t .  Differences t h a t  d i d  emerge are enumerated below, 
with poss ib le  explana t ions ,  

10 



.. . 

PR 3-1/2boundaries 

Simulator 

I I 
I 2 

~ o l lcontrol power, (i;L g  S m o x ) ,  rod/sec2 

Figure 5.- Comparison of roll-axis data  f r o m  six­
degrees-of-freedom simulator and f l igh t .  

1. The s imula to r  c o n s i s t e n t l y  
r equ i r ed  s l i g h t l y  less con t ro l  
power than f l i g h t  f o r  a p i l o t  rat­
i n g  of  3-1/2. This was l i k e l y  a 
r e s u l t  o f  t h e  absence of  e x t e r n a l  
dis turbances i n  t h e  s imula to r .  The 
a i rcraf t ,  on t h e  o t h e r  hand, was 
a f f e c t e d  by r e c i r c u l a t i o n  o f  t h e  
engine exhaust and o t h e r  random 
flow dis turbances,  although every 
attempt was made t o  se lec t  i d e a l  
gust-free f l i g h t  condi t ions.  The 
discrepancy could a l s o  have a psy­
chological  b a s i s  i n  t h e  p i l o t ' s  
knowledge of  t h e  inhe ren t  s a f e t y  of  
t h e  s imulator ,  f o r  h e  apparent ly  
w a s  s a t i s f i e d  with lower r e se rves  
f o r  s a f e t y .  

I t  i s  probable t h a t  a g r e a t e r  
decrease i n  con t ro l  power would 
have been i n d i c a t e d  by t h e  simula­
t o r  i f  i t  were not  f o r  t h e  t r a v e l  
r e s t r i c t i o n  on t h e  maneuvering t a s k  
i t s e l f .  The n e c e s s i t y  of  control-:,	l i n g  la te ra l  p o s i t i o n  w i t h i n  a d i s ­
tance o f  l e s s  than 18 feet  means 
overshoots t h a t  might go unnoticed 
i n  f l i g h t  were c r i t i ca i  i n  t h e  s i m ­
u l a t o r .  An attempt was made t o  
dup l i ca t e  t h e  s imula to r  maneuvering 
t a sk  with t h e  X-14A by keeping t h e  

a i rc raf t  c e n t e r l i n e  wi th in  18-foot l i m i t s  during quick-stop maneuvers. This 
d i s t ance  proved t o  b e  u n r e a l i s t i c a l l y  small, and approximately 60 f e e t  (two 
wing spans) was determined as t h e  minimum maneuvering space r equ i r ed  t o  i n t e r ­
roga te  t h e  con t ro l  system properly i n  f l i g h t .  The s imula to r  maneuvering t a s k ,  
t h e r e f o r e ,  was considered t o  be  more demanding than i t s  counterpar t  i n  f l i g h t .  

2 .  Cor re l a t ion  with f l i g h t  was no t  as good f o r  t h e  6-1/2 p i l o t  r a t i n g  
boundary as f o r  t h e  3-1/2 boundary. The p i l o t ' s  knowledge of  t h e  inhe ren t  
s a f e t y  of  t h e  s imula to r  i s  undoubtedly a g r e a t e r  i n f luence  h e r e ,  consider ing 
t h a t  t he  6-1/2 p i l o t  r a t i n g  boundary i s  s o  dangerous t o  explore  i n  a c t u a l  
f l i g h t .  

3 .  The p i l o t s  r epor t ed  a h ighe r  workload f o r  t h e  s imula to r  spot-hovering 
t a s k  than f o r  f l i g h t ;  t h a t  i s ,  t h e  p i l o t  w a s  "busier" i n  t h e  s imula to r  (making 
high-frequency, low-amplitude inpu t s )  than he was i n  t h e  a i r p l a n e  while hover­
i n g  over a predetermined s p o t  on the  ground. The major reason seemed t o  b e  
low-frequency se rvo  lags  i n  t h e  s imula to r  d r i v e  system, and a s l i g h t  i n c r e a s e  
i n  r o l l  damping r equ i r ed  f o r  hover w a s  r e f l e c t e d  i n  t h e  d a t a .  
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4. As evidenced i n  f i g u r e  5 ,  t h e  s imula to r  d a t a  have a wider band of 
uncer ta in ty  than do t h e  f l i g h t  da t a .  This i s  probably because of a g r e a t e r  
populat ion sampling r a t h e r  than a p e c u l i a r  c h a r a c t e r i s t i c  of  t h e  s imula tor .  
However, t he  fact  t h a t  s c a t t e r  i s  present  i n  e i t h e r  case seems i n e v i t a b l e  f o r  
tes ts  of t h i s  type because of d i f fe rences  i n  p i l o t  backgrounds. For  example, 
p i l o t s  with experience i n  t r anspor t  a i r c r a f t  and l a rge  h e l i c o p t e r s  are more 
l i k e l y  t o  accept l e s s  maneuvering c a p a b i l i t y  than p i l o t s  with j e t - f i g h t e r  
experience.  These d i f fe rences  manifest  themselves more i n  t h e  PR = 3-1/2 
a rea ,  where t h e  p i l o t  i s  concerned about how well he can perform t h e  t a sks ,  
than i n  the  PR = 6-1/2 reg ion ,  where the  p i l o t  i s  more concerned with whether 
he can maintain con t ro l .  

m t u d i n a l  a x i s . - The c o r r e l a t i o n  of  s imula tor  and f l i g h t  p i t c h -
~ = - ~ 

a x i s  d a t a  was very good, as can be seen i n  f i g u r e  6 .  Control power and damp­
i n g  combinations requi red  f o r  p i l o t  r a t i n g s  of 3-1/2 and 6-1/2 are shown. 
(Data were i n s u f f i c i e n t  t o  de f ine  a PR = 6-1/2 boundary when re ference  3 was 
prepared, and these  f l i g h t  d a t a  are presented f o r  t h e  f i rs t  t ime.) There were 
minor devia t ions ,  as i n  the  r o l l - a x i s  comparison, and again t h e  s imulator  

-2.8 -
PR = 3-112 boundaries 

-2.4 ­

-2.0 ­

-1.6 ­

imulator 

l
0 I 

.8 - I I I I 
0 A .8 1.2 I.6 

Pitch control power,(? 8,,,), rad/sec2 

requi red  s l i g h t l y  less con t ro l  power 
f o r  PR = 6-1/2. Also, f o r  
PR = 3-1/2, t h e  s imula tor  requi red  
more con t ro l  power f o r  l i g h t l y  damped 
conf igu ra t ions .  

Despi te  t h e  good d a t a  c o r r e l a t i o n  
shown i n  f i g u r e  6,  t h e  usefulness  of 
t h e  s imula tor  i n  eva lua t ing  p i t c h  
motions was c r i t i c i z e d  f o r  t h e  follow­
i n g  reasons:  F i r s t ,  t h e  s imula tor  
p i t c h  t a s k  n e c e s s i t a t e s  approaching 
ob jec t s  a t  t h e  ex t r emi t i e s  of t h e  
t r a v e l  l i m i t s  i n  a head-on manner (or  
worse y e t ,  t a i l - o n ) ,  so t h a t  pos i t i on  
and c losure  r a t e s  a re  d i f f i c u l t  t o  
judge. The s imula tor  r o l l  t a s k ,  on 
t h e  o the r  hand, involves  looking 
toward ob jec t s  ahead of t h e  cab while 
moving l a t e r a l l y ,  and speed and d i s ­
tance  r e l a t i o n s h i p s  can be judged 
q u i t e  accu ra t e ly .  Also, t h e  p i l o t  i s  
r e l u c t a n t  t o  develop high rearward 
v e l o c i t i e s  because of poor v i s i b i l i t y  
i n  t h a t  d i r e c t i o n .  While t h i s  problem 
i s  a l s o  common t o  f l i g h t ,  it i s  com­
pounded on t h e  s imulator  by t h e  
r e s t r i c t i o n  imposed by t h e  a f t  t r a v e l  
s t o p s .  Because of t h e  d i f f i c u l t y  i n  
u t i l i z i n g  t h e  ava i l ab le  longi tudina l  
maneuvering space,  t h e  p i l o t s  judged 
t h a t  t h e  s imulator  was not  so well  



Yaw axis . - Although yaw motion was considered b e n e f i c i a l  t o  t h e  o v e r a l l  
s imu la t ion ,  t h e  yaw c o n t r o l  t a s k  d i d  not  appear t o  b e  extremely r e a l i s t i c  dur­
i n g  t h e  l i m i t e d  eva lua t ion  of it. This was p r imar i ly  due t o  i ts  r e s t r i c t e d  
t r a v e l  o f  +45", n o t  a l l  o f  which w a s  f u l l y  usab le .  A t  yaw angles g r e a t e r  than 
30°, t h e  p i t c h  gimbal frame s o  dominated t h e  p i l o t ' s  f i e l d  of view t h a t  i t  w a s  
d i s o r i e n t i n g .  Consequently, it does not  appear f e a s i b l e  t o  attempt VFR t a s k s  
r e q u i r i n g  more than +30° yaw displacement. 

Vertical a x i s  .- Good h e i g h t  con t ro l  c h a r a c t e r i s t i c s  were r e spons ib l e  f o r  
much of t h e  realism of  t h e  s imula to r .  Motions were very smooth, and t h e  
p i l o t ' s  workload i n  c o n t r o l l i n g  h e i g h t  was judged t o  b e  nea r ly  i d e n t i c a l  t o  
t h a t  i n  f l i g h t .  Control s e n s i t i v i t y ,  with t h e  conventional f i gh te r - type  
t h r o t t l e  quadrant c o n t r o l l e r ,  was s e t  a t  approximately 7.0 f t / s e c 2 / i n .  This 
s e n s i t i v i t y  was considered t o  b e  near  optimum f o r  t h e  condi t ions of t h e  s i x ­
degrees-of-freedom s imula to r ,  b u t  w a s  s l i g h t l y  l e s s  than t h e  optimum f o r  
s i t u a t i o n s  i n  which e s s e n t i a l l y  u n r e s t r i c t e d  v e r t i c a l  motion was a v a i l a b l e  
(ref.  4 ) .  No attempt w a s  made t o  determine optimum h e i g h t  con t ro l  s e n s i t i v i t y  
i n  t h e  f l i g h t  tests. 

PR=3-1/2 Limited Axes Operation 

The r o l l - a x i s  eva lua t ion  was 
repeated,  i n  abbreviated form, with 
only t h e  r o l l  and l a t e r a l  s imula to r  
motions. These r e s u l t s  were then 
compared with s ingle-degree-of­
freedom d a t a  ( r o l l  motion only) from 
reference 5 ,  and with t h e  s imula to r  
and f l i g h t  d a t a  discussed i n  t h e  pre­
ceding s e c t i o n s .  Figure 7 p re sen t s  
t h e s e  d a t a  as f a i r e d  l i n e s  r a t h e r  
than bands t o  f a c i l i t a t e  comparison 
with t h e  p rev ious ly  published s i n g l e -
a x i s  d a t a .  
I 

/--Figure 7 c l e a r l y  shows t h a t  t h e  
increased r ea l i sm c rea t ed  by added 

of  s imula to r  motion r e s u l t e ddegrees 
1 I i n  c l o s e r  c o r r e l a t i o n  with f l i g h t'\ 

I I 
I 2 

Roll control power, (2S m a x ) ,  rod/sec2 

Figure 7.- Comparison of loll-axis data from 
various degrees of freedom m t i o n  simulators 
and from f l igh t .  

r e s u l t s .  The p l o t  a l s o  i n d i c a t e s  
t h a t  one angular  motion and t h e  
appropr i a t e  l i n e a r  motion y i e l d s  
e s s e n t i a l l y  t h e  same r e s u l t s  as s i x ­
degrees-of-freedom motion. The addi­
t i o n  o f  p i t c h - l a t e r a l  and h e i g h t  
motions helped,  b u t  t h e  major cue 
lacking i n  t h e  one-degree s imulat ion 
was t h e  l a te ra l  motion t h a t  occurs 
with a change i n  r o l l  a t t i t u d e .  
Therefore,  i f  t h e  o b j e c t i v e  of  a s i m ­
u l a t i o n  i s  s o l e l y  t o  optimize con t ro l -
system parameters about t h e  r o l l  a x i s ,  
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a t  least two-degrees-of-freedom motion ( r o l l  and l a t e r a l )  a r e  requi red ,  and 
anything more than those two degrees i s  probably unnecessary. 

General Motion Charac t e r i s t i c s  

The o v e r a l l  motion c h a r a c t e r i s t i c s  of  t h e  s imula tor ,  according t o  p i l o t s '  
comments , c lose ly  resembled the  motions of  a c t u a l  hovering f l i g h t .  Factors 
considered e s s e n t i a l  t o  t h e  success of t h e  s imula t ion  were: ho r i zon ta l  accel­
e r a t i o n  corresponding t o  a given p i t c h - r o l l  a t t i t u d e ,  p i l o t - v e h i c l e  dynamic 
coupling, r e a l i s t i c  p i l o t  workload, smoothness of  opera t ion ,  and t h e  real-
world v i s u a l  scene. The most cons i s t en t  p i l o t  comments a r e  discussed b r i e f l y  
i n  the  following paragraphs.  

Ind iv idua l  operat ion of e i t h e r  t he  l a te ra l  o r  t h e  longi tudina l  mode 
r e s u l t e d  i n  considerable  shaking and v i b r a t i o n  caused by a pe rcep t ib l e  rough­
ness of mechanical d r ive  components, s t r u c t u r a l  dynamic mode e x c i t a t i o n  ( p r i ­
marily from dynamics of  the  tower s t r u c t u r e ,  which can be seen i n  t h e  bode 
p l o t s  discussed i n  appendix A ) ,  and t h e  rumble of s t e e l  r o l l e r s  aga ins t  s t ee l  
t racks.  Under combined-mode opera t ion ,  t h e  t a s k  of  c o n t r o l l i n g  a l l  s i x  
degrees-of-freedom masked the  e f f e c t  of t h e  v ib ra t ions  t o  a l e v e l  of accept­
ab le  smoothness. The v e r t i c a l  l i n e a r  motion and a l l  r o t a t i o n a l  motions were 
except iona l ly  smooth. 

Cer ta in  combinations of cont ro l  power and damping r e s u l t e d  i n  p i l o t -
vehic le  dynamic coupling, which was the  s u b j e c t  of repeated p i l o t s '  comments. 
One of t hese  w a s  i n c i p i e n t  o r  bo rde r l ine ,  p i lo t - induced  o s c i l l a t i o n s  t h a t  
occurred with combinations of high cont ro l  power (high s e n s i t i v i t y )  and low 
damping. This type of dynamic coupling could not  be  properly inves t iga t ed  
with a s imula tor  t h a t  was nonmoving o r  t h a t  had only angular  motions. Unfor­
tuna te ly ,  f l i g h t  c o r r e l a t i o n  f o r  most of t hese  condi t ions was not  poss ib l e  
because of t he  l imi t ed  cont ro l  power c a p a b i l i t y  of  t h e  X-14A a i rp l ane .  

A t  t h e  o the r  end of t he  spectrum, the  low-frequency wallowing motions 
c h a r a c t e r i s t i c  of low-control-power conf igura t ions  of t h e  X-14A were r e a l i s t i ­
c a l l y  reproduced on t h e  s imula tor .  Here, however, t h e  r e s t r i c t e d  l i n e a r  
limits hindered control-system eva lua t ion .  The p i l o t  would sometimes d r i f t  
i n t o  the  l i m i t  s t o p s ,  causing the  computation t o  s t o p  (and an automatic r e t u r n  
of  t h e  s imula tor  t o  i t s  i n i t i a l  condition) before  he could determine whether 
a recovery might have been poss ib l e  i n  f l i g h t .  

Another f requent ly  r ecu r r ing  po in t  seemed t o  confirm t h e  a b i l i t y  of t h e  
s imula tor  t o  c o r r e l a t e  with f l i g h t .  Whenever t h e  p i l o t  commented t h a t  a s i m ­
u l a t o r  con t ro l  configurat ion f e l t  s i m i l a r  t o  t h a t  of a p a r t i c u l a r  VTOL a i r ­
c r a f t  he had flown, i nves t iga t ion  inva r i ab ly  revea led  t h a t  t h e  control-system 
c h a r a c t e r i s t i c s  were e s s e n t i a l l y  i d e n t i c a l .  
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Visual Scene 

The f e a t u r e  of  t h e  s imulator  t h a t  i s  l a r g e l y  responsible  f o r  i t s  good 
motion f i d e l i t y  ( i . e . ,  s imulator  motions sca l ed  one-to-one with computed 
motions) a l s o  makes poss ib l e  t h e  use of t h e  real  world f o r  a v i s u a l  scene.  
Problems t h a t  normally plague a r t i f i c i a l  v i s u a l  p re sen ta t ions ,  such as r e so lu ­
t i o n ,  co lo r ,  f i e l d  of  view, and pe r spec t ive ,  were thus avoided. The cab 
( f i g .  3) was not  enclosed, and t h e  p i l o t  performed the  VTOL hovering t a s k s  
( t a b l e  IV) by v i s u a l  r e fe rence  t o  remain wi th in  t h e  allowable t r a v e l  envelope. 

An important considerat ion i n  t h e  o v e r a l l  e f f ec t iveness  of t h e  s imula to r  
was t h e  provis ion of v i s u a l  a i d s  t h a t  enabled t h e  p i l o t  t o  u t i l i z e  as much of  
t h e  a v a i l a b l e  maneuvering space as poss ib l e .  Colored Styrofoam b a l l s  sus­
pended by ropes i n  f r o n t  of t h e  s imula to r  marked t h e  t r a v e l  l i m i t s  i n  t h e  Y-Z 
plane,  and a l s o  helped t h e  p i l o t  t o  determine t h e  forward l i m i t .  A cathode-
ray  tube mounted on t h e  instrument panel ( f i g .  4) provided a quasi- three­
dimensional p o s i t i o n  d i sp lay .  (This d i s p l a y  was used more as a cross-check 
with e x t e r i o r  v i s u a l  cues r a t h e r  than as a primary p o s i t i o n  i n d i c a t o r . )  

The only u n r e a l i s t i c  aspect  of  t h e  v i s u a l  scene w a s  t h a t  c r ea t ed  by t h e  
n e c e s s i t y  t o  hover very c l o s e  t o  l a r g e  immovable o b j e c t s  ( i n t e r i o r  hanger 
walls,  c e i l i n g s ,  e t c . ) .  This aspect  was o f f s e t  by t h e  expanded outdoor view 
made poss ib l e  by opening l a r g e  doors t h a t  extend across  t h e  f r o n t  of  t h e  s i m ­
u l a t o r .  This view and t h e  r e s u l t i n g  f r e s h - a i r  environment were e f f e c t i v e  
i n  d i s p e l l i n g  t h e  f e e l i n g  of confinement usua l ly  a s soc ia t ed  with indoor ground-
based s imulators .  

CONCLUDING REMARKS 

P i l o t  opinion d a t a  obtained from t h e  s imula to r  and from f l i g h t  c o r r e l a t e d  
very well  f o r  t a s k s  l imi t ed  t o  small maneuvers a s soc ia t ed  with hovering 
f l i g h t .  The t r a v e l  envelope of t h e  s imulator  was considered adequate f o r  
quick s t o p s ,  p r e c i s i o n  hovering, and takeoffs  and landings without t h e  need 
f o r  motion washouts. 

The o v e r a l l  q u a l i t y  of s imula to r  motions imparted the  important 
s ensa t ions  of being supported i n  hovering f l i g h t ,  and the  real-world v i s u a l  
scene e f f e c t i v e l y  d i s p e l l e d  t h e  f e e l i n g  of confinement within a small enclosed 
a rea .  The p i l o t  workload a l s o  was comparable t o  t h a t  i n  f l i g h t .  

The l i n e a r  t r a v e l  and a c c e l e r a t i o n  l i m i t s  of  t h e  s imulator  proved 
somewhat r e s t r i c t i v e .  Increased room t o  i n t e r r o g a t e  control-system response 
was d e s i r a b l e  and s l i g h t l y  higher  l i n e a r  a c c e l e r a t i o n  c a p a b i l i t y  would more 
e f f e c t i v e l y  u t i l i z e  t h e  e x i s t i n g  maneuvering space.  

When r o l l - a x i s  maneuvers were evaluated,  e s s e n t i a l l y  t h e  same r e s u l t s  
were obtained with only r o l l  and la te ra l  motions as were obtained with s i x -
degrees ope ra t ion .  
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The s imula tor  appears t o  be  wel l  s u i t e d  f o r  s t u d i e s  involv ing  t h e  
opt imiza t ion  of  VTOL control-system parameters .  F ina l  v e r i f i c a t i o n  of promis­
i n g  systems should be  accomplished through eva lua t ion  i n  f l i g h t ;  however, t h e  
p i l o t e d  ground s imula t ion  technique w i l l  permit  t h e  range of  test  va r i ab le s  
f o r  those  f l i g h t  t e s t  t o  be much b e t t e r  def ined  and w i l l  a l s o  provide va luable  
p i l o t  o r i e n t a t i o n .  Thus, t h e  e f f i c i ency  and s a f e t y  of  follow-on f l i g h t  
eva lua t ion  w i l l  be  considerably increased .  

Ames Research Center 
Nat ional  Aeronautics and Space Adminis t ra t ion 

Moffet t  F i e l d ,  C a l i f . ,  94035, March 25, 1969 
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APPENDIX A 

FREQUENCY RESPONSE CHARACTERISTICS OF THE AMES 

SIX-DEGREES-OF-FREEDOM MOTION SIMULATOR 

To record t o t a l  system response,  which included both t h e  d r ive  system 
dynamics and t h e  s t r u c t u r a l  dynamics, angular  and l i n e a r  accelerometers appro­
p r i a t e  f o r  each ax i s  of motion were i n s t a l l e d  i n  t h e  cab. The l i n e a r  acce ler ­
ometers were loca ted  c lose  t o  the  cen te r  of r o t a t i o n  i n  order  t o  minimize t h e  
cor rec t ion  for angular  cross-coupling when a l l  s i x  degrees of  freedom were i n  
motion. For t h e  frequency response t e s t s ,  t h e  need f o r  cor rec t ions  w a s  
e l iminated completely by a c t i v a t i n g  only one degree of freedom a t  a t i m e .  

Bode p l o t s  of  system response without ex te rna l  compensation were prepared 
from accelerometer recordings of  t he  r o l l ,  p i t c h ,  longi tudina l ,  and l a t e r a l  
axes.  These records ind ica t ed  t h i r d - o r  fourth-order  systems, except f o r  t h e  
r o l l  ax i s ,  through t h e  frequency range of 0 t o  12.5 rad /sec .  (Frequencies 
h igher  than 12.5 rad/sec were not considered usefu l  because of  roughness due 
t o  structural-mode e x c i t a t i o n . )  Rol l -axis  response was approximated by a 
f i r s t - o r d e r  t r a n s f e r  func t ion .  

Compensation terms were s e l e c t e d  on the  b a s i s  of  t h e  foregoing and 
v e r i f i e d  by accelerometer recordings.  The bandwidth, def ined as t h e  frequency 
range wi th in  which a phase l a g  of  20" i s  not  exceeded, was extended t o  7.0 
rad /sec  o r  b e t t e r  f o r  a l l  axes except r o l l ,  which w a s  extended t o  5.2 rad /sec .  
The compensation terms are ra te  and acce le ra t ion  feed-forward loops obtained 
from the  computation of t h e  equations of motion, and added t o  t h e  p o s i t i o n  
command s i g n a l s .  

Figures 8 through 11 contain bode p l o t s  of both t h e  uncompensated and t h e  
compensated response measurements, t oge the r  with t h e  approximate t r a n s f e r  
funct ions f o r  each. 
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APPENDIX B 


AIRPLANE EQUATIONS OF MOTION AND ANGULAR CONVERSIONS 

The following equations were programmed on a general  purpose analog 
computer. The equations were f irst  solved using t h e  body-axes system, and 
then transformed t o  t h e  simulator-axes re ference  frame. The equations were 
s impl i f i ed  by small-angle approximations. 

Linear Accelerat ions 

fi = r v  - qw - go 

ir = pw - ru  + g+ 

where 	 T z  = t h r u s t  along v e r t i c a l  body ax i s  ( fo rce  up, p o s i t i v e ) ,  l b  
C, = v e r t i c a l  v e l o c i t y  "damping coe f f i c i en t "  t o  approximate X- 14A 

Angular Accelerat ions 

Euler Angles 

@ = p + 0(q@+ r> 

e = q - r $  

$ = q $ + r  
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Inertial-Axes Displacements 

2 = u cos JI + v(- sin JI) + w(e cos JI + + sin $1 

X = S X  dt + K i X  + K;; 

P = u sin JI + v cos JI + w(e sin d~ - + cos d ~ ) 

.. 
where, for servo compensation K;c = 0.32, K,i = 0.08 (assuming 6 Z x) 

K ’Y = 0.28, K+ = 0.037 (assuming i r ;  j ; )  
K i  = 0.5 

Gimba1-Angle Conversions 
sin $ ~ii4G = 4 - e -+  cos $ 

$G = $ 

where, for servo compensation 	 K i  = 0.08 (assuming 4 2 $G) 
K e  = 0.08, K .

9 
= 0.012 (assuming 0 ;+G, 

and 4 G G G )  
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TABLE I.- 	 AMES SIX-DEGREES-OF-FREEDOM SIMULATOR MOTION CAPABILITIES 

Motion L i m i t s  
generated Displacement- V e  l o c ity 

~~~ 

Roll  k45O 3.8 r ad / sec  
P i t c h  k45" 2 . 3  r ad / sec  
Yaw r45 O 4.1 r ad / sec  
Longitudinal k9.1 f t  11.4 f t /sec 
L a t  era1 k9.1 f t  11.4 f t /sec 
Vertical k8.4 f t  1.1.2 f t /sec 

. . 

6 rad/sec2 
7 rad/sec2 
6 ft /sec2 
7 ft /sec2 

10 ft/sec2 

TABLE 11.- CONTROL-SYSTEM MECHANICAL CHARACTERISTICS 

. .  

Maximum I 1 
contro 1 S t a t i c  Force 

Axis d e f l e c tion ,  f r i  c t  ion g rad ien t ,  

i n .  l b  l b / i n .  

Rol l  k5.0 +o.  19 0 
- .44 

P i t c h  k6.0 + . 2 5  
-1.06 

Yaw k3.0 k6.0 

V e r t i c a l  + 6 . 2  (a1 7 
. .  1 

aAdjustable  by t h e  p i l o t .  
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TABLE m.-
SCOPE OF TESTS 

Axis Degrees of 
.nvestigated1 motion freedom used 

Roll All six 


Roll Roll and lateral 

only 


Pitch All six 


Yaw All six 


Vertical All six 


~~ 

Range of 

variables 


Control power:

0.25 to 4.0 rad/sec: 


Aircraft damping: 
+1.0 to -4.0 l/sec 

Control power:

0.25 to 4.0 rad/sec; 


Aircraft damping: 
+1.0 to -3.0 l/sec 

Control power:

0.25 to 1.5 rad/sec' 


Aircraft damping : 
+l.O to -2.0 l/sec 

Control power:

0.25 to 2.0 rad/sec2 


Aircraft damping : 
3 to -1.5 l/sec 

Zontrol power:

1.5 to 10.5 ft/sec2 
9ircraft damping: 
Eixed per X-14A 

.~. 

. .  

Primary purpose

of investigation 


Qualitative and 

quantitative comparison

with flight 


Qualitative and quantita­

tive comparison with 

6'-sim, 2"-sim, and 1°-sir 


2ualitative and 

quantitative comparison

#ith flight 


Jualitative comparison

dith flight 


jualitative comparison

vith flight 
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TABLE 1 V . - SIMULATOR PILOT'S TASKS FOR ROLL AND PITCH AXES 


Steady hover over a spo t ,  maintaining' Prec i s ion  hover: p o s i t i o n  wi th in  approximately +1o r  2 f t .  
(minimum time , Simulated VTOL takeoff  and landing. 

, 30 sec)  Poss ib le  p i lo t - induced  upse t s  as an 
a d d i t i o n a l  check on hovering s t ead iness .  

T rans l a t e  as r a p i d l y  as poss ib l e  from one 
Maneuver : edge of  p i t  t o  t h e  o the r  and r e t u r n ,  then 

over and back a second time. This maneuver(average time f o r  was eva lua ted  with r e spec t  t o  p rec i s ion  of maneuver, 45 sec)  con t ro l ,  and tendency t o  overshoot or t o  
induce o s c i l l a t i o n .  
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N 
0 TABLE V.- PILOT-OPINION RATING SYSTEM 

Operating Adjective Numerical Des c r i p tion 
Primary Can be
missionconditions r a t i n g  r a t i n g  accomplished landed 

1 Excel lent ,  includes optimum Yes Yes 
Normal 2 Good, pleasant  t o  f l y  Yes Yes 

operation Sa t i s f ac to ry  3 Sa t i s f ac to ry ,  bu t  with some mildly Yes Yes 

I
iunp 1easant  char acte r istics 

4 Acceptable, but  with unpleasant Yes Yes 
c h a r a c t e r i s t i c sEmergency Unsatisfactory 5 Unacceptable f o r  normal operation Doubtful Yesoperation 6 Acceptable f o r  emergency condition Doubtful Yes 
onl y  1 

Unacceptable even f o r  emergency 1 i; ~Doubtful~ 
~Unacceptable ~ 71condition1 

I 

No Unacceptable - dangerous No 

operat  ion Unacceptable - uncontrol lable  No 

Motions possibly v i o l e n t  enough t oCatast r o p h i  c 1 10 1, prevent p i  l o t  escape 
I 

No I 

1­

'Fai lure  of a s t a b i l i t y  augmenter. 
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